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Tuyère à section variable
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Tuyère à section variable
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Tuyère à géométrie variable

GE F110
(F-16, F-15)



Flavio Noca Chap 5 – Ecoulements 1D

Tuyère à géométrie variable
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Tuyère à section variable
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Tuyère à section variable
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Ecoulement quasi mono-dimensionnel
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Conservation de masse

 Formulation intégrale

ˆ  0
V S

dV dS
t

 


  
   u n

variation temporelle de ρ à l’intérieur de V 
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Débit surfacique
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Conservation de masse

 Conservation de masse

 Débit surfacique:

uA const 

u
M

A

M

Une tuyère convergente-divergente 
est nécessaire pour passer d’un 
régime subsonique à un régime 
supersonique
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Conservation de quantité de mouvement

flux de à travers S somme des forces surfaciques et volumiques

variation temporelle de à l’intérieur de V 

 Formulation intégrale

 Hypothèses:

•  Permanent: 0
t





•  Quasi mono-dimensionnel: ( )u x

•  Sans viscosité, sans forces volumiques
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Conservation de quantité de mouvement

ˆ ˆ( )   
S S x

dS p dS
 
   
  
 u n u n Formulation intégrale selon x

   2 2

2 2 2 2 2 2

( ) ( )x x x x x x xx x x x x x
u A u A pA pA p A A           

         

     2d d du A pA p A
dx dx dx

  

 Divise par           avec x 0x 

du dpu
dx dx

 

 Avec conservation de la masse
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 Les variables  de l’écoulement ne dépendent que de x. Les équations de 
conservation s’écrivent donc:

Conservation de la masse 

Conservation de la quantité de mouvement

Conservation de l’énergie
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0=+ ududh

Equations

Redondante et identique à la relation précédente 
pour un écoulement isentropique car:

1dh dp
ρ

=
1dh Tds dp
ρ

= +
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Effets de la variation de section

 Ecrivons la conservation de la quantité de mouvement sous la forme,
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 L’écoulement est isentropique, on obtient ainsi
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 En introduisant cette relation dans la conservation de la masse
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Interprétation
2( 1)dA duM

A u
 

u augmente u diminue

u diminue u augmente

1M < 1M >

Effets de la variation de section
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Chapitre précédent
2( 1)dA duM

A u
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2( 1)dA duM
A u
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 On peut obtenir les relations suivantes
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Effets de la variation de section
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Conditions au col

2( 1)dA duM
A u
= −

o Passage de manière continue du régime subsonique au régime supersonique

o Il existe un point (une section) telle que  1=M

          1=M 0dA =

Le passage du régime subsonique au régime supersonique s’effectue sur 
un extrémum de la section

           Minimum ou maximum?
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Conditions au col

 On considère la relation ci-contre sous la forme

 Lorsque M tend vers 1 et dA/dx tend vers 0, on peut appliquer la règle de 
l’Hospital
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Conditions au col

o On obtient donc

o Le membre de droite doit être positif, ce qui implique

2 2
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Le passage du régime subsonique au régime supersonique s'effectue 
au col de la tuyère (minimum)
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M augmente

M diminueM diminue

M augmente

1M < 1M >

Effets de la variation de section

1M >

M diminueM diminue

1M <
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Relation entre une section et la section au col

 Au col, M=1 (conditions soniques)

 Conservation de la masse

 Reste de la tuyère, M≠1

, ,u A   , ,u A

 Ce qui peut s’écrire:
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 On remplace avec les relations isentropiques
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Relation entre une section et la section au col

 La relation précédente se simplifie 1
2( 1)

21 2 11
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• Le nombre de mach M n’est 
fonction que de A/A*

• Deux valeurs de M pour un 
rapport de section donné
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Relation entre une section et la section au col
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Débit-masse

 Le débit masse dans le tube s’écrit
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 Par définition du nombre de Mach, l’équation d’état et la vitesse du son
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 En utilisant encore la vitesse du son

 Puis avec les relations isentropiques
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Débit-masse

 La relation précédente se simplifie

 On utilise aussi la forme sans dimension

 Avec la référence aux conditions soniques, M=1

 
1

2 12 0

0

11
2

p
m M M A

a









      


 
1

2 120

0

11
2

a m
M M

p A









      


   
11

2 12 10

0

1 21
2 1

a m
p A




 









             



1 1
1 22 2 0

0

1 11 1
2 2

p
m M M M A

a
 



 
               



 
1

2 1

0 0

11
2

m
a A













      




Flavio Noca Chap 5 – Ecoulements 1D

Tuyère CONVERGENTE
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Tuyère CONVERGENTE - DIVERGENTE
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